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LIMIT CYCLE BEHAVIOR OF AN AIRFOIL WITH
A CONTROL SURFACE

D. TANG, E. H. DOWELL AND L. N. VIRGIN

School of Engineering, Duke University, Durham, NC 27708-0300, U.S.A.

(Received 11 September 1997 and in revised form 29 July 1998)

A three-degree-of-freedom aeroelastic model with freeplay is modeled theoretically using
a small number of aerodynamic eigenmodes (i.e. a reduced order model) based upon Peters’
finite-state model for two-dimensional aerodynamic flow. The limit cycle behavior and the
sensitivity to initial conditions for the onset of limit cycle oscillations are discussed. A simple
and interesting physical explanation for this behavior is presented based on harmonic balance
or describing function calculations that have been confirmed by numerical time simulations.
The theoretical results are also in good agreement with experiment and a universal scaling law
for the dependence of limit cycle oscillations and bifurcation parameters on freeplay is
elucidated. ( 1998 Academic Press
1. INTRODUCTION

AN EARLIER THEORETICAL/EXPERIMENTAL STUDY of an aeroelastic wing system with a trailing-
edge flap including structural freeplay has been presented in Conner, Tang, Dowell
& Virgin (1997). Based on the nonlinear structural model presented in Conner et al. (1997),
a reduced-order finite-state aerodynamic model based upon Peters’ finite-state model,
presented in Peters & Cao (1995) for the two-dimensional aerodynamic flow over an airfoil,
has been applied to this nonlinear aeroelastic system in Tang, Conner & Dowell (1998).
Using a small number of these aerodynamic eigenmodes (i.e. a reduced-order model), the
aeroelastic model was formed by coupling them to a typical section structural model with
a trailing edge flap and including a freeplay nonlinearity in flap rotation. A schematic of the
typical airfoil section with a control surface at the trailing-edge of the main wing is shown in
Figure 1(a) and a freeplay nonlinearity in the structural stiffness of the control surface is
shown in Figure 1(b). Results obtained from the direct time integration of the nonlinear
equations were shown by Tang et al. (1998) to be in good agreement with previous
theoretical and experimental work of Conner et al. (1997).

In the present paper, we use an equivalent linearization technique often referred to as the
‘‘describing function’’ approach or harmonic balance method to analyze the nonlinear
equations. The harmonic balance method provides additional physical insight, not readily
obtainable from the earlier time simulations. Attention is focussed on the limit cycle
behavior. The numerical results can be given a simple and interesting physical explanation
that is confirmed by the time simulation of the nonlinear equations. The present study is
a continuation and extension of Tang et al. (1998).

2. MATHEMATICAL MODEL

Using the reduced-order finite-state aerodynamic model, a nonlinear aeroelastic model can
be described by the following system of nonlinear equations:
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]MÿN#[C

e
]MyR N#[K

e
]MyN#MMbN![B

m
]MjR

m
]MqN"M0N (1)
0889-9746/98/070839#20 $30.00 ( 1998 Academic Press



Figure 1. (a) Sketch of the aeroelastic typical section with control surface. (b) Restoring moment due to Kb with
a symmetric freeplay region about b"0.
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Let MXN"My, qNT, equation (1) can be written as a compact matrix equation
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and where MyN is a structural response vector composed of Mh, a, bNT, with plunge directed
by h, pitch by a and flap by b as degree of freedom. MqN is the vector of modal coordinates of
the finite-state aerodynamic model, [jR] and [jL] are the right and left aerodynamic
eigenvector matrices, and K is a diagonal matrix whose diagonal entries contain the
aerodynamic eigenvalues. B

m
, B

1
and B

2
are aerodynamic coefficient matrices arising from

the aerodynamic model, and M
e
, C

e
, K

e
are equivalent mass, damping and stiffness mat-

rices arising from the structural and aerodynamic models. More details of this aerodynamic
modeling can be found in Tang et al. (1998).

With a structural freeplay gap, the control surface-restoring moment-rotation relation-
ships may be expressed as

Mb"G
Kb(b!d) D b D5d, b'0,

Kb(b#d) D b D5d, b(0,

0 otherwise.

(3)
TABLE 1
System parameters used in simulation

Geometry parameters
Chord 0)254 m
Span 0)52 m
Semi-chord, b 0)127
Elastic axis a w/r/t b !0)5
Hinge line c w/r/t b 0)5

Mass (inertial) parameters
Mass of wing 0)62868 kg
Mass of aileron 0)18597 kg
Mass/length of wing-aileron 1)558 kg
(Mass of support blocks) (0)47485]2 kg)
Sa (per span) 0)08587 kg m
Sb (per span) 0)00395 kg m
xa 0)434
xb 0)01996
Ia (per span) 0)01347 kg m2
Ib (per span) 0)0003264 kg m2

Stiffness parameters
Ka (per span) 37)3 kg m/s2
Kb (per span) 3)9 kg m/s2
K

h
(per span) 2818)8 kg/m/s2

Damping parameters
fa (half-power) 0)01626
fb (half-power) 0)0115
f
h
(half-power) 0)0113

Frequency parameters
ua (coupled) 9.21 Hz
ub (coupled) 19)44 Hz
u

h
(coupled) 4.45 Hz
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The aeroelastic behavior of this system is significantly dependent upon the nonlinear flap
stiffness which differs importantly from the nominal linear stiffness, Kb .

3. DESCRIBING FUNCTION APPROACH

If we assume a fundamental harmonic solution for the flap rotation of this nonlinear system,

b"b
s
sin ut,

then from equation (3) and the describing function or harmonic balance approach, an
equivalent flap stiffness, Kb%2 , of the nonlinear flap rotation is determined as

Kb%2"FdKb . (4)

In this expression, Fd is the describing function which accounts for the presence of the
freeplay nonlinearity and, most significantly, depends upon the flap rotation. Using the
describing function technique, we obtain a representation for the freeplay nonlinearity of
the form (Hsu & Meyer 1968)

Fd"G
0
1
n (n!2t!sin 2t)

!d(b
s
(d,

otherwise,
(5)

where t is given by

t"sin~1(d/b
s
).

If we use Kb%2b instead of the nonlinear term for Mb from equation (3), then equivalent
linearized equations are obtained. Giving a value of Kb%2 , and solving the linearized
equations, the flutter velocity,º

F
, and flutter frequency, u

F
, can be determined as a function

Kb%2 . Then, from a knowledge of Kb%2 and Kb , Fd is determined from equation (4) and b
s
/d

from equation (5). Thus, º
F

and u
F

are known as a function of flap amplitude, b. We can
also obtain the plunge and pitch amplitudes from the now known b, using the harmonic
balance method. The latter procedure is described as follows.
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Substituting equations (3)— (6) into equation (2) and rearranging the matrix equations we
have

C
K

x
!u2

F
M

x
!u

F
C

x

u
F
C

x
K

x
!u2

F
M

x
D G

X
c

X
s
H"!G

Kb%2
0 H b

s
. (7)

Note that equation (7) is a set of linear algebraic equations with the known variables, b
s
and

u
F
, and b

s
is included in MX

s
N.

Solving equation (7) we obtain
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4. NUMERICAL RESULTS

4.1. RESULTS FOR THE LINEAR SYSTEM (d"0)

Figure 2(a) shows the flutter velocities of the linear system versus the flap stiffness, Kb , from
0 to 2)05 kg m2/s2. (Note that 2)05 is the value for the experimental wind tunnel model and
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also that the flutter boundary changes little for Kb'2)05.) There are two flutter velocities
of special interest. One is º

F0
"8)6 m/s which corresponds to Kb"0 or ub"0 and the

other is º
F.*/

"4.5 m/s which corresponds to Kb"0)1 kg m2/s2 or (ub/ua).*/
"0)46 [see

Figure 2(b)] and is the minimum flutter velocity for all ub . Figure 2(b) shows the flutter
Figure 2. (a) Flutter velocity versus flap stiffness for the linear system; M"4 aerodynamic states. (b) Flutter
velocity versus ub/ua for the linear system. (c) Flutter frequency versus flap stiffness.



Figure 2. (Continued).
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velocities of this linear system versus the uncoupled frequency ratio, ub/ua . There is only
one flutter velocity for ub/ua greater than 1)2, or Kb'0)73 kg m2/s2. For ub/ua less
than 1)2, there are two distinct flutter boundaries, one indicated by the symbol n and the
other indicated by the symbol e. Note that for the former (n), there is a bounded range of
flow velocity for which the motion is unstable. The lowest flutter velocity is the most critical,
of course, and it is given by the branches of the curves denoted by y

1
, y

2
and y

3
in

Figure 2(a).
Figure 2(c) shows the flutter frequencies of this linear system versus the flap stiffness, Kb .

Not surprisingly, we find there is an abrupt change in the flutter frequency at Kb"0)29, i.e.
the frequency jumps to a high frequency (near the pitch natural frequency) from a low
frequency (near the plunge natural frequency). At Kb"0)7, there is another abrupt change
in the frequency from high to low. The flutter frequency branches in Figure 2(c) denoted by
z
1
, z

2
and z

3
correspond to branches y

1
, y

2
and y

3
in Figure 2(a).

Figure 3(a—d) shows (a, b) the eigenvalue solutions of the linear system for Kb"0, and
(c, d) Kb"0)2 kg m2/s2 or ub/ua"0)65, with Figure 3 (a, c) showing the real part or
damping and Figure 3 (b, d) the root-locus. The arrows indicate the direction of the
loci when º increases. From Figure 3(a, b) we find that there are two intersections
with the flow velocity axis for the nominal pitch motion and one intersection for the
nominal plunge motion, and from Figure 3(c, d) there are two intersections with
the flow velocity axis for the plunge motion and one intersection for the pitch motion. Note
that, in fact, all motions in Figures 2 and 3 are truly coupled plunge, pitch and flap
motions; so, to speak of purely plunge or pitch motion is not possible. The additional
eigenvalues shown in these figures arise from the aerodynamic modes. Of course,
strictly speaking all eigenvalues shown are coupled aerodynamic/structural, i.e. aeroelastic
modes.
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4.2. RESULTS FOR THE NONLINEAR SYSTEM (d"$2)12°)

For the nonlinear system, a specific freeplay configuration was chosen corresponding to
a nominal angular gap of 4)24°, i.e. d"$2)12°. However, as noted in Conner et al. (1997)
and Tang et al. (1998), all responses scale in proportion to d. The calculations are based
Figure 3. Eigenvalue solutions of the linear system for using reduced order model with M"4: (a, b) for
ub/ua"0; (c, d) for ub/ua"0)65, (a, c) show the real part of the eigenvalues and (b, d) the root-locus. The arrows

indicate the direction of motion of the loci when º increases.



Figure 3. (Continued).
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upon the describing function or harmonic balance approach (assuming a single harmonic)
and confirmed by nonlinear numerical time simulations with a reduced-order aerodynamic
model of M"4. The numerical response data points corresponding to periodic behavior
are given for a peak amplitude normalized by the angular gap, and the corresponding
velocities are normalized by º

F0
. Note that this normalization is different from that
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used in Conner et al. (1997) and Tang et al. (1998) for reasons that will become clear in what
follows.

In this paper, attention is focussed on two typical cases. One is for a higher flap stiffness
that is greater than the pitch stiffness, i.e., ub/ua"2)1. The other is for a lower flap stiffness
with ub/ua"0)65.

4.2.1. Results for ub/ua"2)1

Employing equations (3) and (4), the relationship between the nondimensional equivalent
stiffness, Kb%2/Kb , and the nondimensional flap rotation b/d may be obtained. This
relationship is shown in Figure 4 as a function of the nondimensional flap amplitude. For
b/d less than one, the equivalent stiffness is zero. As the amplitude increases, the magnitude
of Kb%2 approaches that of Kb .

From the linear flutter equations (when Mb"Kb%2b), equation (1), a relationship be-
tween the equivalent stiffness, Kb%2 , and the flutter velocity, º

F
, is determined as in Figure

2(a). From Figures 4 and 2(a), the nondimensional flap amplitude of the limit cycle
oscillation (LCO) versus the nondimensional flow velocity, uN "º

F
/º

F0
, can be determined

as shown in Figure 5. The stable flap LCO is indicated by the solid line, and the unstable
LCO by the symbol d. There are two unstable LCO branches, the first one between
uN "0)52 and 1 has a frequency near the plunge natural frequency and the second one
between uN "1)34 and 1)4 has a frequency near the pitch natural frequency. Results from the
time integration of nonlinear equation (1) indicated by the dashed line and the experimental
results indicated by the symbols K are also plotted in this figure. It is found that four
distinct regions of response behavior can be observed. First, up to about uN "0)5, there is
a static equilibrium only. Here any initial disturbance dies out. For a flow rate slightly
Figure 4. Nondimensional equivalent flap stiffness for the freeplay nonlinearity.



Figure 5. Nondimensional flap amplitude of limit cycle oscillation versus nondimensional flow velocity, uN , for
ub/ua"2)1.

848 D. TANG E¹ A¸.
greater than uN "0)5, there is a discrete jump to a low-frequency limit cycle. At about uN "1)5
there is another abrupt change in the system response. The low-frequency limit cycle
becomes unstable (rather suddenly) and a high-frequency limit cycle response occurs. The
flap amplitude has a relatively small increase with the change in LCO. However, this new
LCO is characterized by a sudden drop in the plunge amplitude, as shown in Figure 6(a).
The pitch response is shown in Figure 6(b). It is seen that the theoretical results from the
nonlinear time integration and describing function approaches show good correlation and
also good correlation with experiment. For uN '2)52, the response has a very large ampli-
tude as uN approaches the linear flutter velocity for ub/ua"2)1 and the oscillation frequency
approaches the plunge natural frequency. Tests were not conducted for this range, in order
to preclude the possibility of damage to the experimental model.

Both the describing function and time integration approaches suggest that for flow
velocities between º"º

F0
and º

F.*/
or uN "0)5 to 1)0, a finite disturbance is required to

excite the LCO while for uN '1)0 or º'º
F0

, the LCO will be excited for any infinitesimal
disturbance. The minimum finite initial conditions required to excite the LCO can only be
determined by time integration, and the minimum initial plunge displacements required to
excite the LCO are shown in Figures 5 and 6.

This limit cycle behavior described above has a simple and interesting physical explana-
tion, as follows. With freeplay, the flap frequency is really a function of the amplitude of
response, varying between zero when the motion is small and within the freeplay range and
increasing to the nominal flap frequency when the motion is large and extending well
beyond the freeplay range. Now linear theory predicts that the flutter velocity has a min-
imum for some value of flap frequency. If that flap frequency is between zero and the
nominal value, then flutter may occur for velocities above the minimum flutter velocity
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predicted by linear theory and, indeed, the minimum flutter velocity for the present example
is uN "0)52. From nonlinear theory, one may determine the magnitude of the initial
disturbance required to initiate such a flutter limit cycle. It turns out that the magnitude of
the initial disturbance required to initiate the limit cycle is smallest in the plunge degree of
freedom. (See Figure 6(c); note that this figure uses a logarithmic scale.) In fact, the value is
Figure 6. Nondimensional response amplitude of limit cycle oscillation and initial condition values versus
nondimensional flow velocity, uN , for ub/ua"2)1: (a) for plunge (b) for pitch. (c) Minimum initial conditions in

plunge, pitch and flap, respectively, required to initiate LCO.



Figure 6. (Continued).
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quite small in physical terms, h/db&0)3. For typical d, the amplitude of the plunge initial
displacement required to initiate the limit cycle is no more than 1% of the airfoil half-chord,
b. Thus, in our experiments, we were able to apply a small disturbance in the plunge degree
of freedom to readily excite the limit cycle.

If the nominal flap frequency is decreased, the theory suggests that a larger initial
disturbance is required to excite the limit cycle below the flutter velocity predicted by linear
theory for zero flap frequency. This observation explains the difference in results between
those reported for our experimental model and those described by Lacabanne & Humbert
(1997) for an experimental model with a flap frequency well below the pitch frequency. Also
see the discussion in Section 4.2.2 that follows.

Figure 7(a—c) shows time histories of the limit cycle oscillations of the flap rotation, (a) for
º/º

F0
"0)74, (b) for º/º

F0
"1)35 and (c) for º/º

F0
"2)0. The dashed line is for the

present results, the dotted line is for the theoretical results given by Conner & Dowell (1997)
and the solid line for the experiment. At the lower flow velocity, uN "0)74, the LCO is near
the plunge natural frequency. At the higher velocity, uN "2)0, the LCO is near the pitch
natural frequency. At the middle velocity, uN "1)35, a subharmonic response occurs. In
Figure 8, a FFT analysis of the flap rotation is shown for º/º

F0
"0)74, 1)35 and 2)0. Note

that the motion is more nearly simple harmonic for the larger values of º/º
F0

, which is
consistent with the closer agreement between the results from harmonic balance and time
integration in this velocity range, as seen in Figures 5 and 6.

4.2.2. Results for ub/ua"0)65

Figure 9 shows the nondimensional flap amplitude of the LCO and the minimum plunge
initial condition values that lead to limit cycle oscillations versus the nondimensional flow



Figure 7. Limit cycle oscillations of flap rotation, response for ub/ua"2)1: (a) for uN "0)74; (b) for uN "1)35;
(c) for uN "2)0; — —, reduced order model with M"4;2 Conner et al. (1997); —, experiment.
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velocity, uN . Again, there are two flow velocities of special interest: º"4)44 m/s or uN "0)51,
corresponds to the lowest value for which a limit cycle may occur for a sufficiently large
initial condition and º"8)58 m/s or uN "1)0 corresponds to the value above which a limit
cycle occurs for any initial plunge disturbance.

Figure 10(a—c) show the nondimensional plunge and pitch amplitudes of LCO and the
minimum initial condition values for the onset of the limit cycle oscillation versus the
nondimensional flow velocity for: (a) the plunge response, (b) the pitch response, and
(c) the minimum initial condition values required to initiate LCO. Note that a logarithmic
scale is used in Figures 9 and 10.

Figure 11(a—d) shows the time histories of limit cycle oscillation for º/º
F0
"0)55: (a)

plunge for t"0P50 s, (b) plunge for the last one second (from a record of 49—50 s), (c) pitch
and (d) flap rotation. A FFT analysis of the flap motion for º/º

F0
"0)55 and 0)75 is shown

in Figure 12. A single harmonic oscillation near the plunge natural frequency is evident.
This explains the excellent agreement between the results from time integration and
harmonic balance analysis for this ub/ua .



Figure 8. FFT analysis of the flap rotation for uN "0)73, 1)35 and 2)0.

Figure 9. Nondimensional flap amplitude of limit cycle oscillation versus nondimensional flow velocity, uN , for
ub/ua"0)65.

852 D. TANG E¹ A¸.
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4.2.3. Results for other ub/ua values

Figure 13 shows the nondimensional flap amplitude of the LCO versus the nondimensional
flow velocity, uN , for ub/ua"0, 0)23, 0)46, 1)0, 4)2 and 8)4, calculated from the describing
function approach. The results for ub/ua"0)65 and 2)1 are also plotted in this figure. The
Figure 10. Nondimensional response amplitude of limit cycle oscillation and initial condition values vs nondimen-
sional flow velocity, uN , for ub/ua"0)65, (a) for plunge; (b) for pitch; (c) for initial conditions.



Figure 10. (Continued).
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symbols indicate an unstable LCO and the solid line indicates a stable LCO. It is seen that
for ub/ua)(ub/ua).*/

"0)46, no stable limit cycle oscillations have been found. Note that
for ub/ua"0)0, the result is a vertical line at uN "1. When ub/ua'0)46, the amplitude of
the stable LCO decreases as ub/ua increases. A common characteristic of the LCO is that
they have an unstable LCO between uN "0)51 and 1)0 and, for ub/ua'0)46, between
uN "1)34 and 1)4. This might have been anticipated from Figures 2(a, b). Note that, as
ub/uaPR, the LCO amplitude, b/d, approaches unity until the flow velocity reaches the
linear flutter velocity, when b/dPR.

There is an unstable LCO branch for all ub/ua , and for ub/ua((ub/ua).*/
(,0)46 for

the parameters considered in the paper), there is only an unstable branch. Note that this
value of (ub/ua).*/

and the bifurcation values of º
F0

, º
F.*/

and º
F-*/%!3

are all independent
of d as well. The parameter ua/uh

(or equivalently ub/uh
) has not been varied in this study.

For most ua/uh
'1, we expect similar qualitative behavior for the LCO, and indeed we

expect this to be true also for ua/uh
(1, with the roles of the pitch and plunge modes

interchanged.
This critical value of ub/ua"0)46 is that which gives the minimum flutter velocity for the

linear system, see Figure 2(b). This is also the minimum velocity for which LCO may exist
for the nonlinear system with freeplay for any ub/ua .

5. CONCLUSIONS

With freeplay in the flap motion of a three-degree-of-freedom typical airfoil section,
a variety of limit cycle oscillation behavior is observed. Experimental results show
good agreement with the results from numerical time simulations and also from the
describing function approach. The latter analysis provided a simple and interesting



Figure 11. Time histories of limit cycle oscillations for ub/ua"0)65 and uN "0)55: (a) for plunge response of
t"1—50 s; (b) for plunge response of t"49—50 s; (c) for pitch response of t"49—50 s (d) for flap response of

t"49—50 s.
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physical explanation for the observed flutter limit cycle behavior and sensitivity to initial
conditions.

Specifically, the harmonic balance has confirmed the conclusions of Conner et al. (1997)
that the bifurcation velocities where limit cycle oscillations (LCO) occur are independent of
the freeplay range. In addition, unstable LCO have been more easily identified and their



Figure 11. (Continued).
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relationship to the effect of initial conditions better understood. Finally, and very impor-
tantly, the harmonic balance solution has suggested that the minimum velocity for which
a LCO may occur (in the language of nonlinear dynamics this is a turning point where
a stable and unstable LCO come together), for any ratio of nominal flap to pitch frequency,
ub/ua , and for any freeplay, corresponds to the minimum flutter velocity for the linear
system without freeplay and with ub/ua allowed to assume the value that minimizes the
flutter velocity.



Figure 12. FFT analysis of the flap rotation for ub/ua"0)65 and uN "0)55, 0)75.

Figure 13. Nondimensional flap amplitude of limit cycle oscillation vs nondimensional flow velocity, uN , for
ub/ua"0, 0)23, 0)46, 0)65, 1)0, 2)1, 4)2 and 8)4. The solid line denotes a stable LCO; the symbols (h) , n) and e) )

denote unstable LCO.
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APPENDIX: NOMENCLATURE

b semi-chord of the airfoil section, c/2
c chord of the airfoil section
Fdc describing function corresponding to the freeplay nonlinearity
h plunge displacement
hM h/b
Kb flap stiffness
Kb%2 equivalent flap stiffness
M size of reduced order aerodynamic model
Mb flap moment about the flap axis
q aerodynamic modal coordinate
t time
º air speed
º

F
linear flutter velocity

º
F0

linear flutter velocity corresponding to Kb"0
uN nondimensional flutter velocity, uN "º

F
/º

F0a torsional angle of wing
b flap rotational angle
d freeplay region
K aerodynamic eigenvalue matrix
jR, jL right and left aerodynamic eigenvector matrices
jR
m
, jL

m
reduced order right and left eigenvector matrices with m aerodynamic modes

o air density
u

h
, ua plunge and torsional natural frequencies

ub flap natural frequency
u

F
flutter frequency

(@) d( )/dt
( )

s
, ( )

c
sine and cosine components of the variables h, a, b and q
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